In vivo transfection study of chitosan-DNA-FAP-B nanoparticles as a new non viral vector for gene delivery to the lung.
نویسندگان
چکیده
Gene therapy targeted at the respiratory epithelium holds therapeutic potential for diseases such as cystic fibrosis and lung cancer. We recently reported that Chitosan-DNA-FAP-B nanoparticles are good candidates for targeted gene delivery to fibronectin molecules (FAP-B receptors) of lung epithelial cell membrane. In this study Chitosan-DNA-FAP-B nanoparticles were nebulized to mice using air jet nebulizer. The effect of nebulization on size, zeta potential and DNA binding ability of nanoparticles were studied. The level of gene expression in the mice lungs was evaluated. Nebulization did not affect the physicochemical properties of nanoparticles. Aerosol delivery of Chitosan-DNA-FAP-B nanoparticles resulted in 16-fold increase of gene expression in the mice lungs compared with Chitosan-DNA nanoparticles. This study suggested that Chitosan-FAP-B nanoparticle can be a promising carrier for targeted gene delivery to the lung.
منابع مشابه
Stability studies of chitosan-DNA-FAP-B nanoparticles for gene delivery to lung epithelial cells.
A successful gene delivery system requires efficiency and stability during storage. Stability studies are imperative for nanomedicines containing biotechnological products such as plasmids and targeting peptides. Chitosan-DNA-FAP-B nanoparticles are novel non-viral vectors for specific gene delivery to the lung epithelial cells. In this study, the storage stability of chitosan-DNA-FAP-B nanopar...
متن کاملEvaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line
Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...
متن کاملPreparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کاملPreparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کاملPreparation, characterization and transfection efficiency of nanoparticles composed of alkane-modified polyallylamine
Objective(s): Although viral vectors are considered efficient gene transfer agents, their board application has been limited by toxicity, immunogenicity, mutagenicity and small gene carrying capacity. Non-viral vectors are safe but they suffer from low transfection efficiency. In the present study, polyallylamine (PAA) in two molecular weights (15 and 65 kDa) was modified by alkane derivatives ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of pharmaceutics
دوره 421 1 شماره
صفحات -
تاریخ انتشار 2011